Truck engines are not necessarily built more robust then car engines. Enhanced service life is achieved by optimising speed-torque characteristics and hence keeping engine component loading at a low.

According to information obtained from SCANIA average truck fuel consumption is:

Vehicle Gross Weight	Topography		HIT-FLON	7.5% Additional n Consumption per 100 miles	GALLONS saved per 41.000 miles
	9.7 gallons	11.0 gallons		0.78 gallons	173
20 tonnes	11.0 gallons	12.7 gallons	BLACK	0.89 gallons	198
30 tonnes	13.5 gallons	16.1 gallons	WHITE	1.11 gallons	247
40 tonnes	16.1 gallons	19.5 gallons	WHITE	1.33 gallons	296

Derived Savings:

Cars: Field Test 62.500 miles indicates 15% additional consumption $=0,55$ gallons per 100 miles yields 56 gallons per 18.750 miles
Trucks: No field test available!

Assumption:

Analogue to Hit-Flon Consumption Saving Table (but 7.5% is not yet proved by test):
per 62.500 miles average 7.5% additional consumption yields 0.83 gallons
per 100 miles
i.e. 185 gallons per 41.000 miles BLACK
per 62.500 miles 7.5% additional consumption yields 1.22 gallons per 100 miles
i.e. 271 gallons per 41.000 miles WHITE

Note:
Engine oil marketing companies, like Total and Castrol, predict for their fuel-efficient engine oil Fuel savings in the range from $2 \%-4 \%$

